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We study current fluctuations in lattice gases in the macroscopic limit extending the dy-
namic approach for density fluctuations developed in previous articles. More precisely,
we establish a large deviation principle for a space-time fluctuation j of the empirical
current with a rate functional I( j). We then estimate the probability of a fluctuation
of the average current over a large time interval; this probability can be obtained by
solving a variational problem for the functional I. We discuss several possible sce-
narios, interpreted as dynamical phase transitions, for this variational problem. They
actually occur in specific models. We finally discuss the time reversal properties of
I and derive a fluctuation relationship akin to the Gallavotti-Cohen theorem for the
entropy production.

KEY WORDS: Stationary non equilibrium states, Stochastic lattice gases, Current
fluctuations, Gallavotti-Cohen symmetry.

1. INTRODUCTION

1.1. Thermodynamic Functionals for Non Equilibrium Systems

In equilibrium statistical mechanics there is a well defined relationship, es-
tablished by Boltzmann, between the probability of a state and its entropy. This
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fact was exploited by Einstein to study thermodynamic fluctuations. So far it does
not exist a theory of irreversible processes of the same generality as equilibrium
statistical mechanics and presumably it cannot exist. While in equilibrium the
Gibbs distribution provides all the information and no equation of motion has to
be solved, the dynamics plays the major role in non equilibrium.

When we are out of equilibrium, for example in a stationary state of a system
in contact with two reservoirs, even if the system is in a local equilibrium state so
that it is possible to define the local thermodynamic variables e.g. density or mag-
netization, it is not completely clear how to define the thermodynamic potentials
like the entropy or the free energy. One possibility, adopting the Boltzmann–
Einstein point of view, is to use fluctuation theory to define their non equilibrium
analogs. In fact in this way extensive functionals can be obtained although not
necessarily simply additive due to the presence of long range correlations which
seem to be a rather generic feature of non equilibrium systems. This possibility
has been pursued in recent years leading to a considerable number of interest-
ing results. One can recognize two main lines. The first, as well exemplified by
the work of Derrida, Lebowitz and Speer,(13−15) consists in exact calculations in
specific models of stochastic lattice gases. The second is based on a macroscopic
dynamical approach for Markovian microscopic evolutions, of which stochastic
lattice gases are a main example, that leads to some general variational principles.
We introduced this approach in Refs. (3, 4) and developed it in Refs. (5, 6). Both
approaches have been very effective and of course give the same results when a
comparison is possible.

Let us recall the Boltzmann–Einstein theory of equilibrium thermodynamic
fluctuations, as described for example in Ref. (25). The main principle is that the
probability of a fluctuation in a macroscopic region of fixed volume V is

P ∝ exp{V �S/k} (1.1)

where �S is the variation of the specific entropy calculated along a reversible
transformation creating the fluctuation and k is the Boltzmann constant. Equation
(1.1) was derived by Einstein(17) simply by inverting the Boltzmann relation-
ship between entropy and probability. He considered (1.1) as a phenomenological
definition of the probability of a state. Einstein theory refers to fluctuations for
equilibrium states, that is for systems isolated or in contact with reservoirs char-
acterized by the same chemical potentials. When in contact with reservoirs �S is
the variation of the total entropy (system + reservoirs) which for fluctuations of
constant volume and temperature is equal to −�F/T , that is minus the variation
of the free energy of the system divided by the temperature.

We consider a stationary nonequilibrium state (SNS), namely, due to ex-
ternal fields and/or different chemical potentials at the boundaries, there is a
flow of physical quantities, such as heat, electric charge, chemical substances,
across the system. To start with it is not always clear that a closed macroscopic
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dynamical description is possible. If the system can be described by a hydrody-
namic equation, a fact which can be rigorously established in stochastic lattice
gases, a reasonable goal is to find an explicit connection between the thermody-
namic potentials and the dynamical macroscopic properties like transport coef-
ficients. As we discussed in Refs. (3–6), the study of large fluctuations provides
such a connection. It leads in fact to a dynamical theory of the free energy which is
shown to satisfy a Hamilton–Jacobi equation in infinitely many variables requiring
as input the transport coefficients. In the case of homogeneous equilibrium states
the solution of the Hamilton–Jacobi equation is easily found, and the equilibrium
free energy is recovered together with the well known fluctuation-dissipation rela-
tionship, widely used in the physical and physical-chemical literature. On the other
hand in SNS the Hamilton–Jacobi equation is hard to solve. There are few one-
dimensional models where it reduces to a non linear ordinary differential equation
which, even if it cannot be solved explicitly, leads to the important conclusion that
the non equilibrium free energy is a non local functional of the thermodynamic
variables. This implies that correlations over macroscopic scales are present. The
existence of long range correlations is probably a generic feature of SNS and more
generally of situations where the dynamics is not invariant under time reversal.(2)

As a consequence if we divide a system into subsystems the free energy is not
necessarily simply additive.

Besides the definition of thermodynamic potentials, in a dynamical setting a
typical question one may ask is the following: what is the most probable trajectory
followed by the system in the spontaneous emergence of a fluctuation or in its
relaxation to an equilibrium or a stationary state? To answer this question one
first derives a generalization of the Boltzmann-Einstein formula from which the
most probable trajectory can be calculated by solving a variational principle.
The free energy is then related to the logarithm of the probability of such a
trajectory and satisfies the Hamilton–Jacobi equation associated to this variational
principle. For equilibrium states and small fluctuations an answer to this type of
questions was given by Onsager and Machlup in 1953.(30) The Onsager–Machlup
theory gives the following result under the assumption of time reversibility of the
microscopic dynamics: the most probable creation and relaxation trajectories of a
fluctuation are one the time reversal of the other. As we show in Refs. (3, 4), for
SNS the Onsager–Machlup relationship has to be modified in the following way:
the spontaneous emergence of a macroscopic fluctuation takes place most likely
following a trajectory which can be characterized in terms of the time reversed
process.

1.2. Macroscopic Dynamics and Large Fluctuations

We consider many-body systems in the limit of infinitely many degrees of
freedom. Microscopically we assume that the evolution is described by a Markov
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process Xτ which represents the state of the system at time τ . This hypothesis
probably is not so restrictive because also the dynamics of Hamiltonian systems
interacting with thermostats finally is reduced to the analysis of a Markov process,
see e.g. Ref. (16). To be more precise Xτ represents the set of variables necessary to
specify the state of the microscopic constituents interacting among themselves and
with the reservoirs. The SNS is described by a stationary, i.e. invariant with respect
to time shifts, probability distribution Pst over the trajectories of Xτ . We denote
by µ the invariant measure of the process Xτ . The measure µ is a probability
on the configuration space and for each fixed time τ we have Pst (Xτ = ω) =
µ(ω).

We assume that the system admits a macroscopic description in terms of den-
sity fields which are the local thermodynamic variables ρi . The usual macroscopic
interpretation of Markovianity is that the time derivatives of the thermodynamic
variables ρ̇i at a given instant of time depend only on the ρi ’s and the affinities
(thermodynamic forces) ∂ F

∂ρi
at the same instant, recall that F is the free energy. As

we discussed in Ref. (6), for non equilibrium systems, the affinities, defined as the
derivative of the non equilibrium free energy, do not determine the macroscopic
evolution of the variables ρi . There is an additional non dissipative term which
however does not modify the rate of approach to the stationary state.

For simplicity of notation we assume that there is only one thermodynamic
variable ρ e.g. the local density. For conservative systems the evolution of the field
ρ = ρ(t, u), where t and u are the macroscopic time and space coordinates, is then
given by the continuity equation

∂tρ = ∇ ·
[

1

2
D(ρ)∇ρ − χ (ρ)E

]
= −∇ · J (ρ) (1.2)

where D(ρ) is the diffusion matrix, χ (ρ) the mobility and E the external field.
Finally the interaction with the reservoirs appears as boundary conditions to be
imposed on solutions of (1.2). We shall denote by ρ̄ = ρ̄(u) the unique stationary
solution of (1.2), i.e. ρ̄ is the typical density profile for the SNS.

This equation derives from the underlying microscopic dynamics through an
appropriate scaling limit in which the microscopic time and space coordinates
τ, x are rescaled diffusively: t = τ/N 2, u = x/N where N is the linear size of
the system so that the number of degrees of freedom is proportional to N d .
The hydrodynamic Eq. (1.2) represents a law of large numbers with respect to
the probability measure Pst conditioned on an initial state X0. This conditional
probability will be denoted by PX0 . The initial conditions for (1.2) are determined
by X0. Of course many microscopic configurations give rise to the same value of
ρ(0, u). In general ρ = ρ(t, u) is the limit of the local density πN (Xτ ).

The free energy F(ρ), defined as a functional of the density profile ρ = ρ(u),
gives the asymptotic probability of density fluctuations for the invariant measure µ.
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More precisely

µ(πN (X ) ≈ ρ) ∼ exp{−N d F(ρ)} (1.3)

where d is the dimensionality of the system, πN (X ) ≈ ρ means closeness in some
metric and ∼ denotes logarithmic equivalence as N → ∞. In the above formula
we omitted the dependence on the temperature since it does not play any role in
our analysis; we also normalized F so that F(ρ̄) = 0.

In the same way, the behavior of space time fluctuations can be described as
follows. The probability that the evolution of the random variable πN (Xτ ) deviates
from the solution of the hydrodynamic equation and is close to some trajectory
ρ̂(t) is exponentially small and of the form

Pst (πN (X N 2t ) ≈ ρ̂(t), t ∈ [t1, t2]) ∼ exp{−N d [F(ρ̂(t1)) + F[t1,t2](ρ̂)]} (1.4)

whereF(ρ̂) is a functional which vanishes if ρ̂(t) is a solution of (1.2) and F(ρ̂(t1))
is the free energy cost to produce the initial density profile ρ̂(t1). Therefore F(ρ̂)
represents the extra cost necessary to follow the trajectory ρ̂(t) in the time interval
[t1, t2]. Equation (1.4) is a dynamical generalization of the Boltzmann–Einstein
formula, we shall refer to it as the dynamical large deviation principle with
dynamical rate functional F . For stochastic lattice gases, as shown in Ref. (4), the
functional F can be calculated explicitly.

To determine the most probable trajectory followed by the system in the
spontaneous creation of a fluctuation, we consider the following physical situation.
The system is macroscopically in the stationary state ρ̄ at t = −∞ but at t = 0
we find it in the state ρ. According to (1.4) the most probable trajectory is the
one that minimizes F among all trajectories ρ̂(t) connecting ρ̄ to ρ in the time
interval [−∞, 0]. As shown in Refs. (3, 4) this minimization problem gives the
non equilibrium free energy, i.e.

F(ρ) = inf
ρ̂
F[−∞,0](ρ̂) (1.5)

To this variational principle it is naturally associated a Hamilton–Jacobi equation
which plays a crucial role in the analysis developed in Refs. (3–6). We emphasize
that the functional F , hence the corresponding Hamilton–Jacobi equation for F ,
is determined by the macroscopic transport coefficients D(ρ) and χ (ρ), which
are experimentally accessible, see e.g. Ref. (1). We can thus regard (1.5) as a far
reaching generalization of the fluctuation-dissipation theorem since it allows to
express a static quantity like the free energy in terms of the dynamical macroscopic
features of the system.
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1.3. Current Fluctuation and Related Thermodynamic Functionals

Beside the density, a very important observable is the current
flux.(12,20,27,31,32) This quantity gives informations that cannot be recovered from
the density because from a density trajectory we can determine the current trajec-
tory only up to a divergence free vector field. We emphasize that this is due to the
loss of information in the passage from the microscopic level to the macroscopic
one.

In the previous paper(7) we have introduced a Boltzmann–Einstein type for-
mula for current fluctuations. This formula shows that the asymptotic probability,
as the number of degrees of freedom increases, of observing a current fluctuation j
on a space–time domain [0, T ] × � can be described by a rate functional I[0,T ]( j).
In the present paper we develop the approach introduced in Ref. (7) and illustrate
some relevant applications.

To discuss the current fluctuations, we introduce a vector-valued observable
J N ({Xσ , 0 ≤ σ ≤ τ }) of the trajectory X which measures the local net flow of
particles. As for the density, for stochastic lattice gases, we shall be able to derive
a dynamical large deviations principle for the current. Recall that PX0 stands
for the probability Pst conditioned on the initial state X0. Given a vector field
j : [0, T ] × � → R

d , we have

PX0 (J N (X ) ≈ j(t, u)) ∼ exp
{−N d I[0,T ]( j)

}
(1.6)

where the rate functional is

I[0,T ]( j) = 1

2

∫ T

0
dt
〈
[ j − J (ρ)], χ (ρ)−1[ j − J (ρ)]

〉
(1.7)

in which we recall that

J (ρ) = −1

2
D(ρ)∇ρ + χ (ρ)E .

Moreover, ρ = ρ(t, u) is obtained by solving the continuity equation ∂tρ + ∇ ·
j = 0 with the initial condition ρ(0) = ρ0 associated to X0. The rate functional
vanishes if j = J (ρ), so that ρ solves (1.2). This is the law of large numbers for the
observable J N . Note that Eq. (1.7) can be interpreted, in analogy to the classical
Ohm’s law, as the total energy dissipated in the time interval [0, T ] by the extra
current j − J (ρ).

The functionalI describes the fluctuation properties of the current, the density
and all observables related to them, as proved in Sec. 3. Among the many problems
we can discuss within this theory, we study the fluctuations of the time average
of the current J N over a large time interval. This is the question addressed in
Ref. (9) in one space dimension by postulating an “additivity principle” which
relates the fluctuation of the time averaged current in the whole system to the
fluctuations in subsystems. We show that the probability of observing a given
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divergence free time average fluctuation J can be described by a functional 
(J )
which we characterize, in any dimension, in terms of a variational problem for the
functional I[0,T ]


(J ) = lim
T →∞

inf
j

1

T
I[0,T ]( j), (1.8)

where the infimum is carried over all paths j = j(t, u) having time average J .
The static additivity principle postulated in Ref. (9) gives the correct answer only
under additional hypotheses which are not always satisfied. Let us denote by U the
functional obtained by restricting the infimum in (1.8) to divergence free current
paths j , i.e.

U (J ) = inf
ρ

1

2

〈
[J − J (ρ)], χ (ρ)−1[J − J (ρ)]

〉
(1.9)

where the infimum is carried out over all the density profiles ρ = ρ(u) satisfying
the appropriate boundary conditions. From (1.8) and (1.9) it follows that 
 ≤ U .
In one space dimension the functional U is the one introduced in Ref. (9).

There are cases in which 
 = U and in Subsec. 6.1 below we give sufficient
conditions on the transport coefficients D, χ for the coincidence of 
 and U . On
the other hand, while 
 is always convex the functional U may be non convex. In
such a case U (J ) underestimates the probability of the fluctuation J . In Ref. (7)
we interpreted the lack of convexity of U , and more generally the strict inequality

 < U , as a dynamical phase transition. In the present paper we investigate in
more detail the occurrence of this phenomenon. Let us denote by U ∗∗ the convex
envelope of U ; then 
 ≤ U ∗∗ and in Subsection 6.3 we give an example where
U ∗∗ < U .

We shall also consider the fluctuation of the time averaged current with
periodic boundary conditions. In Subsec. 6.2 we discuss the behavior of U and

 under appropriate conditions on the transport coefficient and the external field.
In particular we show that for the Kipnis–Marchioro–Presutti (KMP) model,(22)

which is defined by a harmonic chain with random exchange of energy between
neighboring oscillators, we have U (J ) = (1/2)J 2/χ (m) = (1/2)J 2/m2, where m
is the (conserved) total energy. In addition we show, for J large enough, 
(J ) <

U (J ). This inequality is obtained by constructing a suitable travelling wave current
path whose cost is less than U (J ). We mention that, by using the space-time
approach introduced in Ref. (7), the possibility of taking advantage of travelling
waves has been first envisaged by Bodineau and Derrida(10,11) for the periodic
simple exclusion process with external field. Referring to Subsec. 6.2 for a more
detailed discussion, we here emphasize that for the KMP process this phenomenon
is rather striking as it occurs even in equilibrium, i.e. without external field.

We study also the behavior of I and 
 under time reversal and derive a
fluctuation relationship akin to the Gallavotti-Cohen theorem for the entropy
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production;(18,24,26) this is also naturally discussed within a space-time Gibb-
sian formalism, see Ref. (28) and references therein. In this paper we show, in
the present context of lattice gases, that the anti-symmetric part of 
 is equal to
the power produced by the external field and the reservoirs independently of the
details of the model. From this relationship we derive a macroscopic version the
fluctuation theorem for the entropy production.

2. MICROSCOPIC MODEL

As the basic microscopic model we consider a stochastic lattice gas with a
weak external field and particle reservoirs at the boundary. The process can be
informally described as follows. We consider particles evolving on a finite domain.
At each site, independently from the others, particles wait exponential times at
the end of which one of them jumps to a neighboring site. Superimposed to this
dynamics, at the boundary particles are created and annihilated at exponential
times. More precisely, let � ⊂ R

d be a smooth domain and set �N = N� ∩ Z
d .

We consider a Markov process on the state space X�N , where X is a subset of N,
e.g. X = {0, 1} when an exclusion principle is imposed. The number of particles
at site x ∈ �N is denoted by ηx ∈ X and the whole configuration by η ∈ X�N .
The dynamics is specified by a continuous time Markov process on the state space
X�N with infinitesimal generator L N = N 2[L0,N + Lb,N ] defined as follows: for
functions f : X�N → R,

L0,N f (η) = 1

2

∑
x,y∈�N
|x−y|=1

cx,y(η)[ f (σ x,yη)− f (η)] ,

Lb,N f (η) = 1

2

∑
x∈�N ,y ∈�N

|x−y|=1

{cx,y(η)[ f (σ x,yη)− f (η)]+cy,x (η)[ f (σ y,xη)− f (η)]}.
(2.1)

Here |x | stands for the usual Euclidean norm and σ x,yη, x, y ∈ �N , for the
configuration obtained from η by moving a particle from x to y:

(σ x,yη)z =


ηz if z = x, y
ηy + 1 if z = y
ηx − 1 if z = x .

If x ∈ �N , y ∈ �N , then σ y,xη is obtained from η by creating a particle at x ,
while σ x,yη is obtained by annihilating a particle at x . Therefore the generator
L0,N describes the bulk dynamics which preserves the total number of particles
whereas Lb,N models the particle reservoirs at the boundary of �N . Note that we
already speeded up the microscopic time by N 2 in the definition of L N , which
corresponds to the diffusive scaling.
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Assume that the bulk rates cx,y , x, y ∈ �N , satisfy the local detailed
balance(26) with respect to a Gibbs measure defined by a Hamiltonian H and
in presence of an external vector field E = (E1, . . . , Ed ) smooth on the macro-
scopic scale. Likewise, assume that the boundary rates cx,y , cy,x , x ∈ �N , y ∈ �N ,
satisfy the local detailed balance with respect to H and in presence of a chemical
potential λ0(y/N ) smooth on the macroscopic scale.

The above requirements are met by the following formal definitions. Fix
a smooth function λ0 : � → R and a Hamiltonian H. Consider jump rates c0

x,y
satisfying the detailed balance with respect to the Gibbs measure associated to H
with free boundary conditions if x, y ∈ �N , while if x ∈ �N , y ∈ �N we add the
chemical potential λ0(y/N ):

c0
x,y(η) = exp −{H(σ x,yη)−H(η)}c0

y,x (σ x,yη), x, y ∈ �N ;

c0
x,y(η) = exp−{H(σ x,yη)−H(η)+λ0(y/N )}c0

y,x (σ x,yη), x ∈ �N , y ∈ �N .

Note that we included the inverse temperature in the Hamiltonian H. Of course if
ηx = 0 then c0

x,y(η) = 0.
Fix a smooth vector field E = (E1, . . . , Ed ) : � → R

d and let

cx,x+ei (η) := eN−1 Ei (x/N ) c0
x,x+ei

(η), cx+ei ,x (η) := e−N−1 Ei (x/N ) c0
x+ei ,x (η),

(2.2)

where {e1, . . . , ed} stands for the canonical basis in R
d . Namely, for N large, by

expanding the exponential, particles at site x feel a drift N−1 E(x/N ).
Typically, for a non equilibrium model, we would consider � as the d-

dimensional cube of side one, the system under a constant field E/N and a
chemical potential λ0 satisfying λ0(y/N ) = γ0 if the first coordinate of y is 0,
λ0(y/N ) = γ1 if the first coordinate of y is N , imposing periodic boundary con-
ditions in the other directions of �.

By setting cx,y = 0 if both x and y do not belong to �N , we can rewrite the
full generator L N as follows

L N f (η) = N 2

2

∑
x,y∈Zd

|x−y|=1

cx,y(η)[ f (σ x,yη) − f (η)] (2.3)

We consider an initial condition η ∈ X�N . The trajectory of the Markov
process η(t), t ≥ 0, is an element on the path space D

(
R+; X�N

)
, which consists

of piecewise constant paths with values in X�N . We shall denote by P
N
η the

probability measure on D
(
R+; X�N

)
corresponding to the distribution of the

process η(t), t ≥ 0 with initial condition η.
Examples of stochastic lattices gases are the simple exclusion processes in

which X = {0, 1}, H = 0 and c0
x,y(η) = ηx [1 − ηy] and zero range processes in
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which X = N, H(η) =∑x

∑
1≤k≤η(x) log g(k), for some function g : N → R+

such that g(0) = 0, and c0
x,y(η) = g(ηx ).

3. MACROSCOPIC DESCRIPTION OF LATTICE GASES

The empirical density π N can be naturally defined as follows. To each micro-
scopic configuration η ∈ X�N we associate a macroscopic profile π N (u), u ∈ �,
by requiring that for any smooth function G : � → R

〈π N , G〉 =
∫

�

du π N (u) G(u) = 1

N d

∑
x∈�N

G(x/N )ηx (3.1)

so that π N (u) is the local density at the macroscopic point u = x/N in �. Of
course π N (u) is really a sum of point masses at the points x/N with weight
ηx/N d ; in the limit N → ∞ it will however weakly converge to a “true” function
ρ(u).

The definition of the empirical current is slightly more complicated. Indeed
it is not a function of the configuration η ∈ X�N but of the trajectory {η(t)}t≥0 ∈
D(R+; X�N ). Given an oriented bond (x, y), let N x,y(t) be the number of particles
that jumped from x to y in the time interval [0, t]. Here we adopt the convention that
N x,y(t) is the number of particles created at y due to the reservoir at x if x ∈ �N ,
y ∈ �N and thatN x,y(t) represents the number of particles that left the system at x
by jumping to y if x ∈ �N , y ∈ �N . The difference Qx,y(t) = N x,y(t) − N y,x (t)
is the net number of particles flown across the bond {x, y} in the time interval
[0, t]. Given a trajectory η(s), 0 ≤ s ≤ t , the instantaneous current across {x, y}
is defined as d Qx,y

t /dt . This is a sum of δ–functions localized at the jump times
with weight +1, resp. −1, if a particle jumped from x to y, resp. from y to x .

For a given realization of the process η(t) in D
(
R+; X�N

)
, we define the

corresponding empirical current J N as follows. Let T > 0 and pick a smooth
vector field G = (G1, . . . , Gd ) defined on [0, T ] × �. We then set

〈〈J N , G〉〉T =
∫ T

0
dt

∫
�

du G(t, u) · J N (t, u)

= 1

N d+1

d∑
i=1

∑
x

∫ T

0
Gi (t, x/N ) d Qx,x+ei (t), (3.2)

where · stands for the inner product in R
d and we sum over all x such that either

x ∈ �N or x + ei ∈ �N . The empirical current J N is therefore a signed measure
on
(
[0, T ] × �

)d
, while we recall that the empirical density is a positive measure

on �. The normalization N−(d+1) in (3.2) has been chosen so that the empirical
current has a finite limit as N → ∞.
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The local conservation of the number of particles is expressed by

ηx (t) − ηx (0) +
∑

y:|x−y|=1

Qx,y(t) = 0.

It gives the following continuity equation for the empirical density and cur-
rent. Let G be a smooth function on a neighborhood of the closure of �. Denote
by ∇N G the vector field whose coordinates are (∇N G)i (u) = N [G(u + ei/N ) −
G(u)]. Then

〈π N (T ), G〉−〈π N (0), G〉 = 〈〈J N ,∇N G〉〉T −
∫ T

0

1

N d

∑
x∈�N ,y ∈�N

|x−y|=1

G(y/N )d Qx,y(t)

The above equation can be formally stated as the continuity equation

∂tπ
N + ∇N · J N = 0 (3.3)

In particular, given the initial condition, the trajectory of the process, described by
the empirical density π N can be completely recovered from the empirical current
J N .

We briefly discuss at the heuristic level the law of large numbers, as N → ∞,
for the empirical density and the empirical current. Details are given in Ap-
pendix A. Fix a sequence of configurations ηN and assume that its associated empir-
ical measure π N converges to ρ0(u)du for some density profile ρ0 : � → R+. Let
us denote by ρ = ρ(t, u), J = J (t, u), the limiting values of π N (t, u), J N (t, u),
respectively. Here π N (t, u) is the empirical density associated to the configuration
η(t) and J N (t, u) has been defined in (3.2).

The microscopic relation (3.3) implies the continuity equation

∂tρ + ∇ · J = 0 (3.4)

To derive a closed evolution for ρ and J , we need to express the current J in terms
of the density ρ. To simplify the exposition, we assume the process to be gradient:
there exist local functions h(i)

0 (η), i = 1, . . . , d, depending on the configuration η

around 0, so that for any i = 1, . . . , d

c0
x,x+ei

(η) − c0
x+ei ,x (η) = h(i)

x (η) − h(i)
x+ei

(η)

where h(i)
x is the function h(i)

0 evaluated on the configuration η translated by x .
Denote by µλ the infinite volume grand canonical ensemble relative to the

HamiltonianH with chemical potential λ. Choose the chemical potential λ = λ(ρ)
so that µλ[η0] = ρ and define

d (i)(ρ) = µλ(ρ)
[
h(i)

0

]
, χ (i)(ρ) := (1/2)µλ(ρ)

[
c0

0,ei
+ c0

ei ,0

]
(3.5)
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We show in Appendix A. that the current J can be expressed in terms of the
density ρ as

J = −1

2
D(ρ)∇ρ + χ (ρ)E =: J (ρ) (3.6)

where D and χ are d × d diagonal matrices with entries Dii (ρ) = d
dρ

d (i)(ρ) and

χi i (ρ) = χ (i)(ρ).
For non gradient systems the diffusion matrix D and the mobility χ are not

in general diagonal. In such a situation D is given by a Green–Kubo formula
[see Ref. (33), II.2.2] and χ can be obtained by linear response theory [see Ref.
(33), II.2.5]. These coefficients are related by Einstein relation D = R−1χ , where
R is the compressibility: R−1 = F ′′

0 , in which F0 is the equilibrium free energy
associated to the Hamiltonian H,(33).

To conclude the description of the evolution, it remains to examine the evo-
lution at the boundary of �. We claim that the density is fixed there because we
speeded up diffusively the non-conservative Glauber dynamics at the boundary:

λ
(
ρ(t, u)

) = λ0(u) u ∈ ∂� (3.7)

The macroscopic evolution of the density and the current is thus described
by the equation 

∂tρ + ∇ · J = 0, u ∈ �

J = − 1
2 D(ρ)∇ρ + χ (ρ)E, u ∈ �

λ
(
ρ(t, u)

) = λ0(u), u ∈ ∂�

ρ(0, ·) = ρ0(·).
The stationary density profile ρ̄ = ρ̄(u), u ∈ �, is the stationary solution of

the hydrodynamic equation, that is∇ · J (ρ̄(u)) = 0 , u ∈ �

λ(ρ̄(u)) = λ0(u) u ∈ ∂�,

If we let the macroscopic time diverge, t → ∞, ρ(t) → ρ̄ and J (ρ(t)) con-
verges to J (ρ̄), which is the current maintained by the stationary state.

We next discuss the large deviation properties of the empirical current. More
details are given in Appendix A. As before we consider a sequence of initial
configuration ηN such that the empirical density π N (ηN ) converges to some density
profile ρ0. We fix a smooth vector field j : [0, T ] × � → R

d . The large deviation
principle for the current states that

P
N
ηN (J N (t, u) ≈ j(t, u), (t, u) ∈ [0, T ] × �) ∼ exp

{−N d I[0,T ]( j)
}

(3.8)



Non Equilibrium Current Fluctuations in Stochastic Lattice Gases 249

where the rate functional I is

I[0,T ]( j) = 1

2

∫ T

0
dt 〈[ j(t) − J (ρ(t))], χ (ρ(t))−1[ j(t) − J (ρ(t))]〉 (3.9)

in which ρ(t) = ρ(t, u) is obtained by solving the continuity equation{
∂tρ(t, u) + ∇ · j(t, u) = 0

ρ(0, u) = ρ0(u)
(3.10)

and J (ρ) is given by (3.6).
Of course there are compatibility conditions to be satisfied, for instance if we

have chosen a j such that ρ(t, u) becomes negative for some (t, u) ∈ [0, T ] × �

then I[0,T ]( j) = +∞. Notice that, even if not indicated explicitly in the notation,
the rate functional I depends on the initial density profile ρ0, through equa-
tion (3.10).

We note that in the large deviation functional (3.9) the fluctuation of the
density ρ(t) is determined by the current j(t). The large deviations properties
of the density, which we described in Refs. (3–5) for non equilibrium stochastic
lattice gases, can thus be deduced from the ones of the current, see Appendix A.
for the details. This is due to the fact that the continuity equation, as already
remarked, holds exactly at the microscopic level, see (3.3). On the other hand the
constitutive Eq. (3.6) holds only in the limit N → ∞ when fluctuations can be
neglected.

4. LARGE DEVIATION OF THE TIME AVERAGED CURRENT

We want to study the fluctuations of the time average of the empirical current
over a large time interval [0, T ]; the corresponding probability can be obtained
from the space time large deviation principle (3.8). Fix T > 0 and a divergence
free vector field J = J (u). We introduce the set of possible paths j of the current
with time average J

AT,J =
{

j = j(t, u) :
1

T

∫ T

0
dt j(t, u) = J (u)

}
The condition of vanishing divergence on J is required by the local conservation
of the number of particles. By the large deviations principle (3.8), for T and N
large we have

P
N
ηN

(
1

T

∫ T

0
dt J N (t) ≈ J

)
∼ exp{−N d T 
(J )} (4.1)

where the logarithmic equivalence is understood by sending first N → ∞ and
then T → ∞. In Subsec. 6.4 below we shall show that for the zero range process
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the limits can be taken in the opposite order; we expect this to be true in general.
The functional 
 is given by


(J ) = lim
T →∞

inf
j∈AT,J

1

T
I[0,T ]( j) = inf

T >0
inf

j∈AT,J

1

T
I[0,T ]( j) (4.2)

By a standard sub–additivity argument we show that the limit T → ∞ exists and
coincides with the infimum in T . Indeed, given j1 ∈ AT,J and j2 ∈ AS,J , we have

I[0,T +S]( j) = I[0,T ]( j1) + I[0,S]( j2) (4.3)

where j is obtained by gluing j1 and j2. Here we used the invariance of I under
time shift and that j1 ∈ AT,J implies that the corresponding density ρ1, obtained
by solving the continuity Eq. (3.10), satisfies ρ1(0) = ρ1(T ) so that the densities
match at t = T . From the previous equation we get the sub–additivity property:

inf
j∈AT +S,J

I[0,T +S]( j) ≤ inf
j∈AT,J

I[0,T ]( j) + inf
j∈AS,J

I[0,S]( j)

Even if the rate functional I depends on the initial density profile ρ0, by taking
the limit in (4.2) it is easy to show 
 does not.

We now prove that 
 is a convex functional. Let 0 < p < 1 and J = p J1 +
(1 − p)J2, we want to show that 
(J ) ≤ p
(J1) + (1 − p)
(J2). By (4.2), given
ε > 0 we can find T > 0, j1 ∈ ApT,J1 , and j2 ∈ A(1−p)T,J2 so that


(J1) ≥ 1

pT
I[0,pT ]( j1) − ε


(J2) ≥ 1

(1 − p)T
I[0,(1−p)T ]( j2) − ε

By the same arguments used in (4.3), the path obtained by gluing j1 with j2,
denoted by j , is in the set AT,J . Therefore,


(J ) ≤ 1

T
I[0,T ]( j) ≤ p 
(J1) + (1 − p) 
(J2) + ε

which proves the convexity of 
. These arguments are standard in proving the
existence and convexity of thermodynamic functions in statistical mechanics.

We next study the variational problem on the right hand side of (4.2). We
begin by deriving an upper bound. Given ρ = ρ(u) and J = J (u), ∇ · J = 0, let
us introduce the functionals

U(ρ, J ) = 1

2
〈J − J (ρ), χ (ρ)−1[J − J (ρ)]〉 (4.4)

U (J ) = inf
ρ

U(ρ, J ) (4.5)

where the minimum in (4.5) is carried over all profiles ρ satisfying the boundary
condition (3.7) and J (ρ) is given by (3.6). When J is constant, that is, in the
one-dimensional case, the functional U is the one introduced in Ref. (9).
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We claim that


(J ) ≤ U (J ). (4.6)

The strategy to prove this bound is quite simple, see also Ref. (9). Let ρ̂ = ρ̂(J ) be
the density profile which minimizes the variational problem (4.5). Given the initial
density profile ρ0, we choose some fixed time τ > 0 and a current ̂ = ̂ (u) which
moves the density from ρ0 to ρ̂ in a time lag τ , namely such that τ∇ · ̂ = ρ0 − ρ̂.
We now construct the path j = j(t, u), (t, u) ∈ [0, T ] × � as follows

j(t) =


̂ if 0 ≤ t < τ

T
T −2τ

J if τ ≤ t < T − τ

−̂ if T − τ ≤ t ≤ T

The corresponding density ρ(t) is obtained by solving the continuity equa-
tion (3.10), i.e.

ρ(t) =


ρ0 + t

τ
(ρ̂ − ρ0) if 0 ≤ t < τ

ρ̂ if τ ≤ t < T − τ

ρ0 + T −t
τ

(ρ̂ − ρ0) if T − τ ≤ t ≤ T

It is straightforward to verify that j ∈ AT,J , as well as limT →∞ 1
T I[0,T ]( j) =

U (J ).
By the convexity of 
(J ) we can improve the upper bound (4.6) for free.

Let us denote by U ∗∗ the convex envelope of U , i.e. the largest convex functional
below U . By taking the convex envelope in (4.6) we get


(J ) ≤ U ∗∗(J ) (4.7)

We next discuss a lower bound for the variational problem (4.2). We denote
by Ũ and Ũ the same functionals as in (4.4)–(4.5), but now defined on the space
of all currents without the conditions of vanishing divergence. Let also Ũ ∗∗ be
the convex envelope of Ũ . Let j ∈ AT,J . By the convexity of Ũ ∗∗ in the set of all
currents, we get

1

T
I[0,T ]( j) = 1

T

∫ T

0
dt Ũ(ρ(t), j(t)) ≥ 1

T

∫ T

0
dt Ũ ( j(t))

≥ 1

T

∫ T

0
dt Ũ ∗∗( j(t)) ≥ Ũ ∗∗(J )

which implies


(J ) ≥ Ũ ∗∗(J ) (4.8)
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The upper and lower bounds (4.7) and (4.8) are different in general. For a diver-
gence free J we have Ũ (J ) = U (J ) but since the convex envelopes are considered
in different spaces, we only have Ũ ∗∗(J ) ≤ U ∗∗(J ).

The derivation of the upper bound shows that our result differs from the one
in Ref. (9) if U is not convex. Moreover, if 
(J ) < U (J ), the optimal density path
ρ in the variational problem (4.2) must be time dependent.

We now examine how different behaviors of the solution to the variational
problem (4.2) reflect different dynamical regimes that we interpret as dynamical
phase transitions. It is convenient to work in the time interval [−T, T ] instead
of [0, T ]. We consider the system in the ensemble defined by conditioning on
the event (2T )−1

∫ T
−T dt J N (t) = J with N and T large. The parameter J plays

therefore the role of an intensive thermodynamic variable and the convexity of 


expresses a stability property with respect to variations of J .
If 
(J ) = U (J ) and the minimum for (4.5) is attained for ρ = ρ̂(J ) we have

a state analogous to a unique phase: by observing the system at any fixed time t we
see, with probability converging to one as N , T → ∞, the density π N (t) ∼ ρ̂(J )
and the current J N (t) ∼ J .

When 
(J ) = U ∗∗(J ) < U (J ), we have a state analogous to a phase co-
existence. Suppose for example J = p J1 + (1 − p)J2 and U (J ) > U ∗∗(J ) =
pU (J1) + (1 − p)U (J2) for some p, J1, J2. The values p, J1, J2 are deter-
mined by J and U . The density profile is then not determined, but rather
we observe with probability p the profile ρ̂(J1) and with probability 1 − p
the profile ρ̂(J2). Actually there is a memory of initial condition: if we take
ρ(−T ) = ρ(T ) = ρ̂(J1) we will see a density close to ρ̂(J1) in the time intervals
[−T,−(1 − p + δ)T ] and [(1 − p + δ)T, T ], and a density close to ρ̂(J2) in the
time interval [−(1 − p − δ)T, (1 − p − δ)T ]; here δ > 0.

Consider now the case in which a minimizer for (4.2) is a function ̂ (t) not
constant in t . This is possible (an example will be given in Subsection 6.2) only
when 
(J ) < U ∗∗(J ). Suppose first that ̂ (t) is periodic with period τ and denote
by ρ̂(t) the corresponding density. Of course we have τ−1

∫ τ

0 dt ̂ (t) = J . In such a
case we have in fact a one parameter family of minimizers which are obtained by a
time shift α ∈ [0, τ ]. By choosing 2T an integral multiple of τ and ρ(−T ) = ρ̂(α)
for some α ∈ [0, τ ] then the empirical density in the conditional ensemble will
follow the path ρ̂(t + α + T ). This behavior is analogous to a non translation
invariant state in equilibrium statistical mechanics, like a crystal. Finally if ̂ (t)
is time dependent and not periodic the corresponding state is analogous to a
quasi–crystal.

The asymptotic (4.1) can be formulated in terms of the Laplace transform
of the empirical current as follows. For each divergence free, time independent,
vector field λ = λ(u) we have

lim
T →∞

lim
N→∞

1

T N d
log E

N
ηN

(
eN d 〈〈J N ,λ〉〉T

) = 
∗(λ) (4.9)
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where 
∗(λ) is the Legendre transform of 
(J ):


∗(λ) = sup
J

{〈λ, J 〉 − 
(J )},

where the supremum is carried over all the divergence free vector fields J . It
follows from (4.6) that U ∗ ≤ 
∗.

We conclude this section deriving a variational expression for U ∗. Recall the
definitions (4.4), (4.5) of U .

U ∗(λ) = sup
J,ρ

{
〈λ, J 〉 − 1

2
〈[J − J (ρ)], χ (ρ)−1[J − J (ρ)]〉

}
= sup

J,ρ

{
−1

2
〈[J − J (ρ) − χ (ρ)λ], χ (ρ)−1[J − J (ρ) − χ (ρ)λ]〉

+ 1

2
〈λ, χ (ρ)λ〉 + 〈λ, J (ρ)〉

}
To compute the supremum over J we decompose the vector field J (ρ) + χ (ρ)λ
as follows

J (ρ) + χ (ρ)λ = χ (ρ)∇ψ + [J (ρ) + χ (ρ)
(
λ − ∇ψ

)
] (4.10)

where ψ solves{∇ · (χ (ρ)∇ψ
) = ∇ · (J (ρ) + χ (ρ)λ

)
u ∈ �

ψ(u) = 0 u ∈ ∂�

Since the second term in the decomposition (4.10) is divergence free we get

U ∗(λ) = sup
ρ

{
−1

2
〈∇ψ, χ (ρ)∇ψ〉 + 1

2
〈λ, χ (ρ)λ〉 + 〈λ, J (ρ)〉

}
(4.11)

where the supremum is over all density profiles ρ satisfying F ′
0(ρ(u)) = λ0(u),

u ∈ ∂�.

5. TIME–REVERSAL AND GALLAVOTTI–COHEN SYMMETRY

In this Section we discuss the properties of the rate functional for the current
under time reversal. We also show that the functional 
, which measures the prob-
ability of deviations of the time averaged current, satisfies a fluctuation theorem
analogous to the Gallavotti–Cohen symmetry.

5.1. Time–Reversal Properties of the Rate Functional

In the previous Sections we discussed a large deviation principle given a fixed
initial condition ηN associated to a density profile ρ0, i.e. π N (ηN ) → ρ0. Now we
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consider instead the stationary process, namely the initial condition is distributed
according to the invariant measure µN which is defined by

∑
η µN (η)L N f (η) = 0

for any observable f : X�N → R; recall the generator L N has been defined in
(2.3). As discussed in the Introduction, the large deviations of the empirical density
under the distribution µN are described by the non equilibrium free energy F , i.e.,

µN (π N ≈ ρ) ∼ exp{−N d F(ρ)} (5.1)

In Refs. (3, 4) we show that the functional F , which for equilibrium states is trivially
related to the free energy, can be characterized by a variational problem on the
dynamical rate functional for the density F introduced in (1.4), see also (A.15).
To this variational problem is associated a Hamilton–Jacobi equation which plays
a crucial role.

In order to analyze the large deviations properties of the stationary process,
since the initial condition is not fixed, it is natural to consider the joint fluctuations
of the empirical density and current. We have

P
N
µN

(
π N ≈ ρ,J N ≈ j t ∈ [−T, T ]

) ∼ exp
{− N dG[−T,T ](ρ, j)

}
(5.2)

Here P
N
µN , a probability measure on the space D(R; X�N ), is the stationary process.

Of course, fluctuations of the density and of the current are not independent since
the continuity equation ∂tρ + ∇ · j = 0 must be satisfied. Therefore the large
deviation functional is

G[−T,T ](ρ, j) =
{

F(ρ(−T )) + I[−T,T ]( j) if ∂tρ + ∇ · j = 0

+∞ otherwise
(5.3)

where I has been introduced in (3.9). If we are interested only in the current
fluctuations in the stationary process we get the appropriate rate functional by
projecting (5.3),

inf
ρ0

{F(ρ0) + I[−T,T ]( j)}.

Let us denote by La
N the adjoint of the generator L N (2.3) with respect

to the invariant measure µN . We call the process generated by La
N , which is still

Markovian, the adjoint process. We remark that the invariant measure of the adjoint
process is again µN . Given a path η ∈ D(R; X�N ) its time reversed is naturally
defined as [ϑη](t) = η(−t). The stationary adjoint process, that we denote by
P

N ,a
µN , is the time reversal of P

N
µN , i.e. we have P

N ,a
µN = P

N
µN ◦ ϑ−1. We extend the

definition of the time reversal operator ϑ to the current as [ϑ j](t) = − j(−t). Note
that the current j changes sign under time–reversal. Then

P
N
µN

(
π N ≈ ρ,J N ≈ j t ∈ [−T, T ]

)= P
N ,a
µN

(
π N ≈ ϑρ,J N ≈ ϑ j t ∈ [−T, T ]

)
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At the level of large deviations this implies

G[−T,T ](ρ, j) = Ga
[−T,T ](ϑρ, ϑ j) (5.4)

where Ga
[−T,T ] is the large deviation functional for the adjoint process.

The relationship (5.4) has far reaching consequences. We next show that it
implies a fluctuation dissipation relation for the current. We assume that the adjoint
process has a dynamical large deviations principle of the same form as (5.3) with
I replaced by Ia where

Ia
[−T,T ]( j) = 1

2

∫ T

−T
dt 〈[ j(t) − J a(ρ(t))], χ (ρ(t))−1[ j(t) − J a(ρ(t))]〉,

in which J a(ρ) is the typical value of the current of the adjoint process. We divide
both sides of (5.4) by 2T and take the limit T → 0. By using (5.3) we get〈δF

δρ
, ∂tρ

〉
= 1

2
〈 j − J (ρ), χ (ρ)−1[ j − J (ρ)]〉− 1

2
〈 j + J a(ρ), χ (ρ)−1[ j + J a(ρ)]〉

recalling that ∂tρ + ∇ · j = 0, this is equivalent to

−
〈
δF

δρ
,∇ · j

〉
= −〈J (ρ) + J a(ρ), χ (ρ)−1 j〉

+ 1

2
〈J (ρ) + J a(ρ), χ (ρ)−1[J (ρ) − J a(ρ)]〉

which has to be satisfied for any ρ and j . By using that δF/δρ vanishes at the
boundary of �, see Ref. (4), we can integrate by parts the left hand side above and
get

J (ρ) + J a(ρ) = −χ (ρ)∇ δF

δρ
(5.5)

〈J (ρ), χ (ρ)−1 J (ρ)〉 = 〈J a(ρ), χ (ρ)−1 J a(ρ)〉. (5.6)

Equation (5.5) is a fluctuation dissipation for the current analogous to the
one for the density discussed in Ref. (4). It also extends the relationships between
currents and thermodynamic forces, see e.g. Ref. (29), to a non equilibrium setting.
By plugging (5.5) into (5.6) we also get another derivation of the Hamilton–Jacobi
equation mentioned before, i.e.

1

2

〈
∇ δF

δρ
, χ (ρ)∇ δF

δρ

〉
−
〈
δF

δρ
,∇ · J (ρ)

〉
= 0

Let us now consider the variational problem (4.2) as well as the same problem
for the functional Ia , we denote by 
a the corresponding functional. From (5.4)
we get


(J ) = 
a(−J ) (5.7)
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For reversible process this symmetry states that the functional 
 is even.
Let us consider a path j(t), t ∈ [−T, T ] such that (2T )−1

∫ T
−T dt j(t) = J for

some divergence free vector field J . Recalling (3.6) and that D(ρ)χ (ρ)−1 = F ′′
0 (ρ)

we have

χ (ρ)−1 J (ρ) = −1

2
∇F ′

0(ρ) + E

Since F ′
0(ρ(u)) = λ0(u), u ∈ ∂�, by developing the square in (3.9) and integrating

by parts we get

1

2T
G[−T,T ](ρ, j) = 1

2T
G[−T,T ](ϑρ, ϑ j) − 2〈J, E〉 +

∫
∂�

d� λ0 J · n̂ (5.8)

where d� is the surface measure on ∂� and n̂ is the outward normal to �. In
particular this relation implies that if ρ̂, ̂ is an optimal path for the variational
problem defining 
(J ) then ϑρ̂, ϑ̂ is an optimal path for the variational problem
defining 
(−J ).

By taking the limit T → ∞ in (5.8) we get


(J ) − 
(−J ) = 
(J ) − 
a(J ) = −2〈J, E〉 +
∫

∂�

d� λ0 J · n̂ (5.9)

which is a Gallavotti–Cohen type symmetry in our space time dependent setup
for macroscopic observables. Note that the right hand side of (5.9) is the power
produced by the external field and the boundary reservoirs (recall E is the external
field and λ0 the chemical potential of the boundary reservoirs). We mention that
the functional U , as defined in (4.5), also satisfies the relationship (5.9); in the
one-dimensional case this has been observed in Ref. (9).

5.2. Entropy Production

Recall that we denote by P
N
µN the stationary state and by P

N ,a
µN its time re-

versed, i.e. the stationary adjoint process. In the context of Markov processes the
Gallavotti–Cohen observable is defined as

WN (T ) = − 1

2T N d
log

dP
N ,a
µ

dPN
µ

∣∣∣∣
[−T,T ]

(5.10)

where the subscript means that we consider both distributions in the time inter-
val [−T, T ]. We introduced the factor 2T N d in order to discuss the asymptotic
N , T → ∞. As discussed in Ref. (26), §2.4, WN (T ) can be interpreted as the mi-
croscopic production of the Gibbs entropy. For N fixed and T → ∞ the functional
WN satisfies a large deviation principle with rate function fN namely,

P
N
µN (WN (T ) ≈ q) ∼ exp{−2T N d fN (q)} (5.11)
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In Refs. (18, 24, 26) it is shown that WN satisfies the Gallavotti–Cohen symmetry,
which states that the odd part of fN is linear with a universal coefficient: fN (q) −
fN (−q) = −q.

An elementary computation, analogous to the one in Ref. (26), shows that, for
the stochastic lattice gases as introduced in Sec. 2, we can express the functional
WN in terms of the empirical current. More precisely, we have

WN (T ) = − 1

2T N d

{
log

µN (η(T ))

µN (η(−T ))
+ H(η(T )) − H(η(−T ))

− 2

N

d∑
j=1

∑
x

E j (x/N )Qx,x+e j ([−T, T ])+
∑
x∈�N
y ∈�N

λ0(y/N )Qx,y([−T, T ])

}
,

where the summation is carried over all x such that either x ∈ �N or x + e j ∈ �N .
The previous equation can be understood as an entropy balance. Indeed, in the
right hand side the first term is, for N large, the difference of the non equilibrium
free energy at times T and −T , the second is the difference of the energy and
the third is the work done by the external field E and the boundary reservoirs.
Therefore, WN can be interpreted as the total entropy produced by the system in
the time interval [−T, T ].

Recalling the definition of the empirical currentJ N , we can rewrite the above
equation as

WN (T ) = 1

2T

{
− 1

N d

[
log

µN (η(T ))

µN (η(−T ))
+ H(η(T )) − H(η(−T ))

]
+ 2〈〈J N , E〉〉[−T,T ] − 1

N d

∑
x∈�N
y ∈�N

λ0(y/N )Qx,y([−T, T ])

} (5.12)

We emphasize that, while the empirical current is a vector in R
d , WN (t) is a scalar.

From the previous expression it follows that, for any δ > 0

lim
T →∞

lim
N→∞

P
N
ηN

(∣∣∣WN (T ) − 2〈E, J (ρ̄)〉 +
∫

∂�

d� λ0 J (ρ̄) · n̂
∣∣∣ > δ

)
= 0 (5.13)

where we recall that J (ρ̄) = −(1/2)D(ρ̄)∇ρ̄ + χ (ρ̄)E is the typical current.
We note that as T → ∞ we can neglected the first line on the r.h.s. of (5.12)

because it is a boundary term. We thus define

W̃N (T ) = 1

2T

2〈〈J N , E〉〉[−T,T ] − 1

N d

∑
x∈�N
y ∈�N

λ0(y/N )Qx,y[−T, T ]

 (5.14)

which satisfies, as T → ∞ with N fixed, the large deviation estimate (5.11) with
the same rate function fN .
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On the other hand, since W̃N (T ) is a function of the empirical current, we
can apply the large deviation principle (5.2). We then get, by taking first the limit
N → ∞ and then T → ∞,

P
N
µN (W̃N (T ) ≈ q) ∼ exp{−2T N d f (q)} (5.15)

where the rate function f can be expressed in terms of the functional I namely

f (q) = lim
T →∞

inf
j∈BT,q

1

2T
I[−T,T ]( j)

in which we introduced the set of currents

BT,q :=
{

j :
1

2T

[
2
∫ T

−T
dt 〈 j(t), E〉 −

∫ T

−T
dt

∫
∂�

d� λ0 j(t) · n̂

]
= q

}
(5.16)

where we recall d� is the surface measure on ∂� and n̂ is the outward normal
to �.

Finally, since E and λ0 are time independent we can take the time average of
the empirical current in (5.16). Recalling (4.2), we get

f (q) = inf
J∈Bq


(J ) (5.17)

where

Bq :=
{

J : 2〈J, E〉 −
∫

∂�

d� λ0 J · n̂ = q , ∇ · J = 0

}
(5.18)

where we inserted the condition ∇ · J = 0 because other things do not happen.
The content of the variational problem (5.17) is to look for, among all possible
currents, the best one to have a fixed entropy production. It is straightforward to
verify that the symmetry (5.9) implies the classical Gallavotti–Cohen symmetry
for the limiting functional f , i.e. f (q) − f (−q) = −q. On the other hand, if
d > 1, Eq. (5.9) is more general than the classical Gallavotti–Cohen symmetry.

In the above argument we first took the limit N → ∞ and next T → ∞, but
we expect that these limits could be taken in any order. In particular these would
imply limN→∞ fN (q) = f (q). In Section 6.4 we prove that this is the case for
the zero range process. We finally note that in the one–dimensional case, setting
� = [0, 1], we can easily solve (5.17). We get

f (q) = 


(
q

2〈E〉 − [λ0(1) − λ0(0)]

)

6. DYNAMICAL PHASE TRANSITIONS: EXAMPLES

As we have discussed in Sec. 4, we always have the following inequalities

Ũ ∗∗(J ) ≤ 
(J ) ≤ U ∗∗(J ) ≤ U (J ) (6.1)
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for any divergence free J . A natural question is when the above inequalities
are strict and when are equalities, in particular when 
 = U . As discussed in
Section 4, the strict inequality 
(J ) < U (J ) is a dynamical phase transition on
the ensemble defined by conditioning on the event in which the time average
current equals J . In this Section we discuss several examples which show that
different scenarios actually do take place in concrete models. As we have shown in
Section 3 the macroscopic behavior (including the probability of large fluctuations)
of the system is determined by the transport coefficients D(ρ) and χ (ρ). In this
Section we consider these as given functions and discuss the properties of the
variational problem defining 
. Specific choices of D and χ correspond to well
studied microscopic models, such as the simple exclusion processes, the zero
range process, and the KMP model.(22)

In Subsec. 6.1 we find sufficient conditions on D and χ implying 
 = U . In
Subsec. 6.2 we discuss periodic boundary conditions: under appropriate conditions
on the transport coefficient and the external field we show that the minimizer for
the variational problem defining U is obtained when ρ is constant (in space).
Moreover, by considering travelling waves, we find for J large a better (space-
time dependent) strategy so that 
 < U . These conditions hold in particular for
the KMP model with no external field. Moreover, for the exclusion process with
sufficiently large external field, we show that there exists a travelling wave path of
current whose cost is strictly less than the constant (in time and space) one. This
was first observed in Ref. (11). In Subsec. 6.3, we give an example where U is non
convex which implies 
 < U . Finally, in Subsec. 6.4 we compute the Legendre
transform of U for the one dimensional zero range process in the presence of
external field. As a byproduct, we show that the macroscopic limit N ↑ ∞ and
T ↑ ∞ can be interchanged.

6.1. A Sufficient Condition for � = U

We consider the case when the matrices D(ρ) and χ (ρ) are multiple of the
identity, i.e., there are strictly positive scalar functions still denoted by D(ρ),
χ (ρ), so that D(ρ)i, j = D(ρ)δi, j , χ (ρ)i, j = χ (ρ)δi, j , i, j = 1, . . . , d. We denote
derivatives with a superscript. Let us first consider the case with no external field,
i.e. E = 0, we shall prove that if

D(ρ)χ ′′(ρ) ≤ D′(ρ)χ ′(ρ) for any ρ (6.2)

then 
 = U . In this case U is necessarily convex.
Moreover we show that if

D(ρ)χ ′′(ρ) = D′(ρ)χ ′(ρ) for any ρ (6.3)
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then we have 
 = U for any external field E . We mention that under the condition
(6.3), as shown in Ref. (8), §7, also the non equilibrium free energy F can be
computed explicitly and it is a local functional.

Condition (6.2) is satisfied e.g. for the symmetric simple exclusion process,
where D = 1 and χ (ρ) = ρ(1 − ρ), ρ ∈ [0, 1]. Condition (6.3) is satisfied either
if D is proportional to χ ′ or χ is constant and D arbitrary. Examples are the zero
range model, where D(ρ) = � ′(ρ) and χ (ρ) = �(ρ) for some strictly increasing
function � : R+ → R+, and the non interacting Ginzburg–Landau model, where
D(ρ), ρ ∈ R, is an arbitrary strictly positive function and χ (ρ) is constant.

Let us consider first the case when E = 0 and condition (6.2) holds. In view of
(3.9) and (4.4), to prove that 
 = U it is enough to show that for each j = j(t, u) ∈
AT,J , i.e., such that T −1

∫ T
0 dt j(t) = J , and ρ(t) such that ∂tρ(t) + ∇ · j(t) = 0

we have

1

T
I[0,T ]( j) = 1

T

∫ T

0
dt U(ρ(t), j(t)) ≥ U (J ) (6.4)

Instead of ρ we introduce a new variable α so that α = d(ρ) := ∫ ρdρ ′ D(ρ ′).
Condition (6.2) is then equivalent to the concavity of the function X (α) :=
χ
(
d−1(α)

)
where d−1 is the inverse function of d. We introduce the functional

V(α, j) := U(d−1(α), j) = 1

2

〈
j + 1

2
∇α,

1

X (α)

[
j + 1

2
∇α

]〉
where we used (3.6). We claim that the functional V is jointly convex in (α, j).
Let us first show that this implies the lower bound (6.4). We have

1

T

∫ T

0
dt U(ρ(t), j(t)) = 1

T

∫ T

0
dt V(α(t), j(t))

≥ V
(

1

T

∫ T

0
dt α(t),

1

T

∫ T

0
dt j(t)

)
≥ inf

α
V(α, J ) = inf

ρ
U(ρ, J ) = U (J )

in which we used the convexity of V in the second step and j ∈ AT,J in the third.
To prove that V is jointly convex we write

V(α, j) = sup
a

Va(α, j) , Va(α, j) :=
〈

j + 1

2
∇α, a

〉
− 1

2
〈a, X (α)a〉

and the supremum is taken over all smooth vector fields a = a(u) on �. Since
X (α) is concave, for each fixed a the functional Va is jointly convex. The claim
follows.



Non Equilibrium Current Fluctuations in Stochastic Lattice Gases 261

In the case with non vanishing E , we can use the same argument, but the
functional V is given by

V(α, j) := U(d−1(α), j) = 1

2

〈
j + 1

2
∇α − X (α)E,

1

X (α)

[
j + 1

2
∇α − X (α)E

]〉
Condition (6.3) is equivalent to X ′′(α) = 0; in this case we can easily show, as
before, that V is jointly convex.

6.2. Periodic Boundary Conditions

In this subsection we consider the case when � = T, the one dimensional
torus of side length one and constant external field E . If there is no external field,
E = 0, then it is an equilibrium model; non equilibrium if E = 0.

Due to the periodic boundary conditions, we have the possibility of construct-
ing a space time path (ρ(t, u), j(t, u)) of density and current in the form of a trav-
elling wave for the variational problem (4.2) defining the functional 
. In Ref. (11)
Bodineau and Derrida perform the linear stability analysis of the constant (in space
and time) profile showing, in particular, that for the weakly asymmetric simple
exclusion process it becomes unstable for sufficiently large external field. However
to prove the strict inequality 
 < U one should first show that the optimal density
profile for the variational problem (4.5) defining U is indeed the constant one. By
a numerical computation (with a finite N ), in Ref. (11) is shown that the travelling
wave path is the optimal one.

In this subsection, by soft arguments (Jensen inequality and convexity prop-
erties of the transport coefficients), we find sufficient conditions on D, χ , E and
J implying that the optimal profile for the variational problem (4.5) defining the
functional U is the constant one. Under other appropriate conditions, we can show
that a suitable travelling wave, for J large enough, is better, for the variational
problem (4.2), than the constant profile. These arguments, applied to the weakly
asymmetric simple exclusion process with large enough external field, imply that
there exists a travelling wave path which is better than the constant profile. On the
other hand, for the KMP process with no external field the above arguments allow
to give a complete analytical proof of the strict inequality 
 < U .

In the context of periodic boundary conditions, the proof that 
 = U pre-
sented in the previous subsection applies if D is constant. In other words, we have
that 
(J ) = U (J ) for all J provided D is constant, χ is concave and E = 0.
Let Mm(T) the convex set of positive functions ρ on the torus T such that∫ 1

0 du ρ(u) = m; we call m the mass of ρ. In this context,

U (J ) = inf
ρ

1

2

∫ 1

0
du

{J − J (ρ)}2

χ (ρ)
,
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where the infimum is carried over Mm(T) and J (ρ) is defined in (3.6). For each
v ∈ R, let �v : R → R+ be defined by

�v(J ) = inf
ρ

1

2

∫ 1

0
du

{J + v[ρ − m] − J (ρ)}2

χ (ρ)
(6.5)

where the infimum is carried over Mm(T).
We claim that for each v ∈ R


 ≤ �v (6.6)

Indeed, consider a profile ρ0 in Mm(T). Let T = v−1 and set ρ(t, u) =
ρ0(u − vt), j(t, u) = J + v[ρ0(u − tv) − m] in the time interval [0, T ]. An el-
ementary computation shows that the continuity equation holds and that the time
average over the time interval [0, T ] of j(·, u) is equal J . In particular,


(J ) ≤ 1

T

∫ T

0
dt U(ρ(t), j(t))

On the other hand, it is easy to show by periodicity that the right hand side is equal
to

1

2

∫ 1

0
du

{J + v[ρ0 − m] − J (ρ0)}2

χ (ρ0)

By optimizing over the profile ρ0, we conclude the proof of 6.6.
Fix a mass m, an external field E and a current J . If J 2/χ + E2χ is a convex

function then

U (J ) = 1

2

{J − Eχ (m)}2

χ (m)
(6.7)

and the optimal profile for the variational problem defining U (J ) is the constant
profile ρ(u) = m. In particular if 1/χ and E2χ are convex functions then (6.7)
holds for any J so that U is trivially convex.

Indeed, fix a mass m, a current J and an external field E . For any profile ρ in
Mm(T),∫ 1

0
du

{J − J (ρ)}2

χ (ρ)
=
∫ 1

0
du

{J − Eχ (ρ)}2

χ (ρ)
+
∫ 1

0
du

[(1/2)∇d(ρ)]2

χ (ρ)

because the cross term vanishes upon integration; here d(ρ) is such that d ′(ρ) =
D(ρ). We thus have∫ 1

0
du

{J − Eχ (ρ)}2

χ (ρ)
=
∫ 1

0
du

[
J 2

χ (ρ)
+ E2χ (ρ)

]
− 2E J

≥ J 2

χ (m)
+ E2χ (m) − 2E J
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where we used Jensen inequality, the convexity of J 2/χ + E2χ , and ρ ∈ Mm(T).
Therefore, for all profiles ρ in Mm(T),∫ 1

0
du

[J − J (ρ)]2

χ (ρ)
≥ {J − Eχ (m)}2

χ (m)
.

Since the cost of the constant profile ρ(u) = m is (1/2){J − Eχ (m)}2/χ (m), (6.7)
is proven.

Fix a mass m, e ∈ R and take the external field E = eJ . If

[1 − e2χ (m)2]χ ′′(m) > 0 (6.8)

we claim that there exists w in R such that

lim sup
|J |→∞

�wJ (J )

J 2
<

{1 − eχ (m)}2

2χ (m)
(6.9)

where �v has been defined in (6.5).
Fix a mass m, a current J , an external field E = eJ and take v = wJ . For ρ

in Mm(T), by expanding the square we get that∫ 1

0
du

{J + wJ [ρ − m] + (1/2)∇d(ρ) − Eχ (ρ)}2

χ (ρ)

= J 2
∫ 1

0
du

{1 + w[ρ − m] − eχ (ρ)}2

χ (ρ)
+ 1

4

∫ 1

0
du

[∇d(ρ)]2

χ (ρ)
. (6.10)

because the cross term vanishes. Expand the square on the first integral. Let
F(r ) = Fw,m(r ) be the smooth function defined by

F(r ) = {1 + w[r − m]}2

χ (r )
− 2e + e2χ (r ).

An elementary computation shows that

F ′′(m) = 1

χ (m)3
{2χ (m)2w2 − 4χ (m)χ ′(m)w + 2χ ′(m)2

− χ (m)χ ′′(m) + e2χ ′′(m)χ (m)3}.
Let w = χ ′(m)/χ (m). For this choice F ′′(m) < 0. In particular, we can choose a
non constant profile ρ(u) in Mm(T) close to m such that F ′′(ρ(u)) < 0 for every
u. Hence, by Jensen inequality, the coefficient of J 2 in (6.10) is strictly less than

{1 − eχ (m)}2

χ (m)
.

The statement follows.
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For the simple exclusion process we have D(ρ) = 1 and χ (ρ) = ρ(1 − ρ).
In the case of no external field, E = 0, since χ is concave and χ−1 is convex,
it satisfies both the hypotheses for 
 = U and the ones for (6.7); hence 
(J ) =
(1/2)J 2/m(1 − m). If E = 0 the assumptions for (6.7) holds only if |E/J | ≤ 4; in
such a case we can conclude that the constant density profile is optimal for U but we
do not know if it coincides with 
. On the other hand for |E/J | > [m(1 − m)]−1

(6.8) holds so that we can conclude, by (6.9), that for J large there exists a
travelling wave whose cost is strictly less than the one of the constant profile
ρ(u) = m. As discussed above this is however not enough to prove the strict
inequality 
(J ) < U (J ).

For the KMP model(8,22) we have D(ρ) = 1 and χ (ρ) = ρ2. Since χ and
1/χ are convex functions, the assumptions for (6.7) are satisfied for any ex-
ternal field E . Hence U (J ) = 1/2 [J − Em2]2/m2 and the corresponding opti-
mal density profile is always the constant one. Fix now e such that |e| < 1/m2

(in particular e = 0), then (6.8) holds. Therefore for the KMP process with
external field E = eJ , by (6.6), (6.7) and (6.9), we have 
(J ) < U (J ) for
all sufficiently large currents J .

We conclude by giving, for the KMP process with no external field, an
interpretation of the strict inequality 
 < U in terms of the power necessary, ac-
cording to (A.10), to sustain a time average current J . To get U (J ) = (1/2)J 2/m2

we switch on a constant external field equal to J/m2 which provides exactly
the power U (J ). On the other hand we can impose a time average current J by
imposing a space time dependent external field of the type F(u − vt); the corre-
sponding density and current paths are then travelling waves. By exploiting the
convexity of ρ2 we have shown that, for J large, the second strategy requires
less power.

6.3. An Example with Non Convex U

We discuss here a special choice of the macroscopic transport coefficients D
and χ for which the functional U defined in (4.5) is not convex. In particular the
upper bound (4.7) with the convex envelope differs from (4.6).

We take d = 1, � = (0, 1), E = 0, D(ρ) = 1, and χ (ρ) a smooth function
with χ (0) = χ (1) = 0 (accordingly the density satisfies 0 ≤ ρ ≤ 1) such that there
exist 0 < A < B < 1, � ∈ R for which χ (ρ) = e−�ρ if A ≤ ρ ≤ B. Furthermore
we take the equilibrium boundary conditions ρ(0) = ρ(1) = ρ̄ = (A + B)/2. We
show that, for a suitable choice of the parameters A, B, �, there are J1 < J2 so
that U ′′(J ) < 0 for any J ∈ (J1, J2).

Although we did not construct explicitly a microscopic lattice gas model in
which the macroscopic transport coefficients meet the above requirements, we
believe it would be possible to exhibit a model which has the same qualitative
behavior.
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For d = 1, D = 1, E = 0, and J ∈ R, the Euler–Lagrange equation for the
variational problem (4.5) defining the functional U (J ) is

1

2
ρ ′′(u) = −χ ′(ρ(u))

χ (ρ(u))

[
J 2 − 1

4
ρ ′(u)2

]
, u ∈ (0, 1)

ρ(0) = ρ0, ρ(1) = ρ1

(6.11)

For the above choice of χ and of the boundary conditions, provided 4|J | ≤
B − A, a solution of (6.11) is given by

ρ̂J (u) = ρ̄ + 2

�
log

cosh[J�(u − 1/2)]

cosh[J�/2]
(6.12)

as can be easily verified. Note indeed that A ≤ ρ̂J ≤ B since we assumed 4|J | ≤
B − A.

We shall prove below that, under the above conditions, (6.12) is the unique
solution of the boundary value problem (6.11). A simple computation then gives

U (J ) = 2e�ρ̄

�2

J�

2
tanh

J�

2

Let F(z) := z tanh z and z∗ be the unique positive root of z−1 = tanh z. Then
F ′′(z) = 2(1 − tanh2 z) (1 − z tanh z) < 0 for z > z∗. Hence U ′′(J ) < 0 if |J | ∈(
2z∗/�, (B − A)/4

)
. This interval is not empty provided � is chosen large enough.

To show that (6.12) is the unique solution of the boundary value problem
(6.11), let us first prove that, given J = 0, any solution of (6.11) satisfies the a
priori bound |ρ ′| ≤ 2|J |. Since ρ(0) = ρ(1), we can exclude the possibility that
|ρ ′(u)| ≥ 2|J | for every u ∈ [0, 1]. By the continuity of ρ ′, it is therefore enough to
prove that |ρ ′(u)| = 2|J | for every u ∈ [0, 1]. Suppose conversely that there exists
u∗ ∈ [0, 1] such that ρ ′(u∗) = 2J . Then, by the uniqueness of the Cauchy problem
1
2ρ ′′ = χ ′(ρ)

χ (ρ) [J 2 − 1
4ρ ′2], ρ(u∗) = ρ∗, ρ ′(u∗) = 2J , we would get that the solution

of (6.11) is ρ(u) = ρ(u∗) + 2J (u − u∗). Since this function does not satisfy the
boundary conditions in (6.11) we find the desired contradiction.

Since 4|J | ≤ B − A, the a priori bound |ρ ′| ≤ 2|J | implies that any solution
ρ of (6.11) satisfies A ≤ ρ ≤ B. For such values we have that χ ′(ρ)/χ (ρ) =
−�. Uniqueness of the solution to (6.11) can then be easily proven by explicit
computations.

6.4. Zero Range Processes

In this section we consider the so-called one-dimensional zero-range pro-
cesses which models a non-linear diffusion of lattice gases(21) under constant
external field E . The model is described by positive integer-valued variables
ηx representing the number of particles at site x . The particles jump with rates
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(1/2)g(ηx )) exp{E/N } to right, (1/2)g(ηx )) exp{−E/N } to the left, respectively.
The function g(k) is such that g(k + 1) − g(k) ≥ a for some a > 0 and g(0) = 0.
We assume that our system interacts with particle reservoirs at the sites 0 and N
whose activity is given by ϕ0, ϕ1.

The generator of this Markov process is given by (2.3) with �N = {1, . . . , N }
and

cx,x+1(η) = g(ηx ) eE/N , cx+1,x (η) = g(ηx+1) e−E/N

for 1 ≤ x ≤ N − 1. Moreover, at the boundary,

c0,1(η) = ϕ0 eE/N , c1,0(η) = g(η1) e−E/N ,

cN ,N+1(η) = g(ηN ) eE/N , cN+1,N (η) = ϕ1 e−E/N .

Let V (u) = Eu and let ϕN (x) be the solution of

eV �N
ϕN

eV
= ϕN

eV
�N eV

for 1 ≤ x ≤ N and with boundary condition ϕN (0) = ϕ0, ϕN (N + 1) = ϕ1. Here
�N stands for the discrete Laplacian.

The invariant measure µN is the grand–canonical measure µN =∏
x∈�N

µx,N obtained by taking the product of the marginal distributions

µx,N (ηx = k) = 1

Z (ϕN (x))

ϕN (x)k

g(1) · · · g(k)
(6.12)

where Z (ϕ) =∑k≥0 ϕk/[g(1) · · · g(k)] is the normalization constant. Let R(ϕ) =
ϕZ ′(ϕ)/Z (ϕ) and denote by � its inverse function. For this process, the hydro-
dynamic Eq. (1.2) and the large deviations principle (1.4) can be obtained with
D(ρ) = � ′(ρ), χ (ρ) = �(ρ), see Ref. (4). Moreover, F ′

0(ρ) = log �(ρ).
Let first show how, for this model, it is possible to solve explicitly the varia-

tional problem (4.11) for the Laplace transform of the total current. We note that
the case E = 0 has already been solved in Ref. (9); see Ref. (19) for more results
on the current fluctuations in the zero range processes. Since we are in one space
dimension, the condition ∇ · λ = 0 simply states that λ is a constant. Moreover we
have J (ρ) = −(1/2)� ′(ρ)ρ ′ + �(ρ)E , where hereafter the apices denotes differ-
entiation w.r.t. the macroscopic variable u. Note that condition (6.3) holds so that

 = U . Changing variables in (4.11) by introducing ϕ(u) = �(ρ(u)), u ∈ [0, 1];
we get

U ∗(λ) = 1

2
sup

ϕ

∫ 1

0
du {−ϕ(u)ψ ′(u)2 + λ2ϕ(u) − λϕ′(u) + 2λEϕ(u)}
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where the supremum is over all positive ϕ such that ϕ(0) = ϕ0, ϕ(1) = ϕ1 and ψ

solves

2(ϕ(u)ψ ′(u))′ = (−ϕ′(u) + 2[E + λ]ϕ(u))′

with boundary conditions ψ(0) = ψ(1) = 0. The solution is

ψ(u) = −1

2
log

ϕ(u)

ϕ0
+ (E + λ)u + A

∫ u

0
dv

1

ϕ(v)

where

A =
{

1

2
log

ϕ1

ϕ0
− (E + λ)

}{∫ 1

0
du

1

ϕ(u)

}−1

After elementary manipulations, the variational problem for U ∗(λ) becomes

U ∗(λ) = 1

2
sup

ϕ

{{
−1

2
log

ϕ1

ϕ0
+ E + λ

}2 {∫ 1

0
du

1

ϕ(u)

}−1

−1

4

∫ 1

0
du

ϕ′(u)2

ϕ(u)
− E2

∫ 1

0
du ϕ(u) + E(ϕ1 − ϕ0)

}
(6.13)

The associated extremality condition, which determines the optimal profile, is

2ϕ′′(u)ϕ(u) − (ϕ′(u))2 − 4E2ϕ(u)2

= −4

(
−1

2
log

ϕ1

ϕ0
+ E + λ

)2 [ ∫ 1

0
dv

1

ϕ(v)

]−2

(6.14)

with the boundary condition ϕ(0) = ϕ0, ϕ(1) = ϕ1.
In the case E = 0 it is not difficult to check that the solution of (6.14) is

ϕ(u) = C

(
u + e−λ

1 − e−λ

)(
u − ϕ0eλ

ϕ0eλ − ϕ1

)
where C = −(1 − e−λ)(ϕ0eλ − ϕ1). We then get

U ∗(λ) = −1

4
[ϕ′(1) − ϕ′(0)] = 1

2
(1 − e−λ)(ϕ0eλ − ϕ1)

In the case E = 0, the solution of (6.14) is instead given by

ϕ(u) = C(e2Eu − a)(e−2Eu − b)

where

a = ϕ0e2E+λ − ϕ1

ϕ0eλ − ϕ1
b = 1 − e−λ−2E

1 − e−λ



268 Bertini et al.

and

C = (1 − e−λ)(ϕ0eλ − ϕ1)

(e2E − 1)(1 − e−2E )
.

Notice that this solution converges, as E → 0, to the solution with no external
field. Plugging this solution into the variational formula for U ∗, we get that

U ∗(λ) = −1

4
[ϕ′(1) − ϕ′(0)] + 1

2
[ϕ1 − ϕ0]

= E
{ ϕ0

1 − e−2E
(eλ − 1) + ϕ1

e2E − 1
(e−λ − 1)

}
(6.15)

We conclude this section showing that we may invert the order of limits in
(4.9) for zero range models. For 0 ≤ x, y ≤ N + 1, |x − y| = 1, recall that we
denote by N x,y

t the total number of jumps from x to y in the time interval [0, t].
For 0 ≤ x ≤ N , let Qx,x+1

t = N x,x+1
t − N x+1,x

t be the total current over the bond
(x, x + 1). Note that we are including the boundary bonds.

Consider the limit as microscopic time t goes to infinity of the Laplace
transform of the total current:

eN (λ) = 1

N
lim

t→∞
1

t
log E

N
ηN

[
exp

{
λN−1

N∑
x=0

Qx,x+1
t

}]
and notice that fN given by (5.11) is related to the Legendre transform of eN by

f ∗
N (λ) = eN (λ{2E − log(ϕ1/ϕ0)}).

Notice furthermore that this expression does not depend on the initial condition
ηN by ergodicity.

Since two currents Qx,x+1
t Qy,y+1

t differ only by surface terms, in the asymp-
totic t ↑ ∞, we may replace all currents by Q0,1

t and obtain that

eN (λ) = 1

N
lim

t→∞
1

t
log EµN

[
eλQ0,1

t
]
.

To compute the previous limit, we represent the zero range process in terms
of interacting random walks. Let N0 be the total number of particles at time
0: N0 =∑x ηx (0). We start labeling these particles. New particles entering the
system at the boundary get new labels in an increasing order. Denote by Xi (t) the
position at time t of the i-th particle. X1 performs a weakly asymmetric random
walk on �N with absorption at the boundary and mean g(1) exponential waiting
times. X2 does the same but its clock rates are affected by X1. If they occupy
different sites, the X2-exponential has rate g(1), while if both occupy the same site,
its exponential clock has rate g(2) − g(1) and so on. We need for this construction
the function g to be increasing. Moreover the condition g(k + 1) − g(k) ≥ a > 0
guarantees that these random walks will hit the boundary with probability one.
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Let wi (resp. ui ) the indicator function of the event that the i-th particle
created at the left (resp. right) boundary is absorbed at N + 1 (resp. 0). Denote
by N±(t) a Poisson process of rate ϕ0/2, ϕ1/2 which represents the entrance of
particles at either boundary. With this notation, up to negligible terms in the limit
t ↑ ∞,

Q0,1
t =

N−(t)∑
i=1

wi −
N+(t)∑
i=1

ui .

In the above construction the interaction of the random walks affects only the jump
rates but not the transition probabilities; the random variables wi , u j are therefore
independent. An elementary computation now shows that

eN (λ) = 1

N
{(ϕ0/2)pN {eλ − 1} + (ϕ1/2)qN {e−λ − 1}},

where pN = P[wi = 1] (resp. 1 − qN ) is the probability that a random walk, ab-
sorbed in 0 and N + 1, with transition probability p(x, x + 1) = e2E/N /(e2E/N +
1) = 1 − p(x, x − 1) starting from 1 (resp. N ) is absorbed in N + 1 (resp. 0).
These probabilities can be explicitly computed.

As N ↑ ∞, we get that

lim
N→∞

eN (λ) = E
{ ϕ0

1 − e−2E
(eλ − 1) + ϕ1

e2E − 1
(e−λ − 1)

}
which agrees with (6.15).

A.APPENDIX A. SUPPLEMENT TO SECTION 3

We present here a derivation, at the heuristic level, of the law of large numbers
and the large deviations, as N → ∞, for the empirical density and the empirical
current. Recall the notation introduced in Sec. 3. We have seen there that to prove
the law of large numbers for the empirical measure and the current, we need to
express the limit current J in terms of the density ρ.

In the context of stochastic lattice gases this is done by assuming a local
equilibrium state. Roughly speaking, this means that in a large microscopic re-
gion � around u, still infinitesimal macroscopically, the system has relaxed to the
Gibbs state (with Hamiltonian H) conditioned to

∑
x∈� ηx = |�|π N (t, u). This

assumption, which can be rigorously justified,(21) allows us to express the empiri-
cal current in terms of the empirical density. We next show how this can be done
for the so–called gradient models.

By standard computations in the theory of Markov processes we have that,
[see Ref. (33), Lemma II.2.3] for a bond {x, x + e j },

Qx,x+e j (t) = (1/2)N 2
∫ t

0
ds [cx,x+e j (ηs) − cx+e j ,x (ηs)] + Mx,x+e j (t),
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where Mx,x+e j (t) are martingales with bracket

〈Mx,x+ei , M y,y+e j 〉(t) = (1/2)N 2δx,yδi, j

∫ t

0
ds [cx,x+ei (η(s)) + cx+ei ,x (η(s))].

Let G be a smooth vector field as in (3.2) vanishing on ∂�. By definition of the
martingales Mx,x+e j (t),

〈〈J N , G〉〉T = 1

2

1

N d

∫ T

0
dt

d∑
i=1

∑
x

Gi (t, x/N )N

× [cx,x+ei (η(t)) − cx+ei ,x (η(t))] + MN
T (G), (A.1)

where MN
T (G) is a martingale term. An easy computation, based on the explicit

formula for the quadratic variations of the martingales Mx,x+e j (t), shows that
MN

T (G) vanishes as N → ∞. We next use definition (2.2) and Taylor expansion
to write

cx,x+ei (η) − cx+ei ,x (η)

= c0
x,x+ei

(η)

[
1 + 1

N
Ei (x/N )

]
− c0

x+ei ,x (η)

[
1 − 1

N
Ei (x/N )

]
+ O(1/N 2)

= [c0
x,x+ei

(η) − c0
x+ei ,x (η)

]+ 1

N

[
c0

x,x+ei
(η) + c0

x+ei ,x (η)
]

Ei (x/N ) + O(1/N 2)

(A.2)
The gradient condition, see Ref. (33), II.2.4, holds if there exist local functions
h(i)

0 (η), i = 1, . . . , d, depending on the configuration η around 0, so that for any
i = 1, . . . , d

c0
x,x+ei

(η) − c0
x+ei ,x (η) = h(i)

x (η) − h(i)
x+ei

(η) (A.3)

where h(i)
x is the function h(i)

0 evaluated on the configuration η translated by x . Let
us plug the right hand side of (A.2) into (A.1). By the gradient condition (A.3)
we can perform a summation by parts on the first term. Note that there are no
boundary terms since we assumed G to vanish on the boundary. We get, with a
negligible error as N → ∞,

〈〈J N , G〉〉T ≈ 1

2

1

N d

∫ T

0
dt

d∑
i=1

∑
x

{
∂i Gi (t, x/N )h(i)

x (η)

+ Gi (t, x/N )
[
c0

x,x+ei
(η(t)) + c0

x+ei ,x (η(t))
]
Ei (x/N )

}
(A.4)

Recall the definition of the functions d (i), χ (i) introduced in (3.5). By the
local equilibrium assumption mentioned above and the equivalence of ensembles
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from (A.4) we get

〈〈J N , G〉〉T ≈
d∑

i=1

∫ T

0
dt

∫
�

du

{
1

2
∂i Gi (t, u)d (i)(π N (t, u))

+ Gi (t, u)χ (i)(π N (t, u))Ei (u)

}
(A.5)

Taking the limit N → ∞, the empirical density π N (t, u) converges to ρ(t, u),
whereas the empirical current J N (t, u) converges to a vector field J (t, u).
Equation (A.5) then implies

J (ρ) = −1

2
D(ρ)∇ρ + χ (ρ)E (A.6)

where D and χ are d × d diagonal matrices with entries Dii (ρ) = d
dρ

d (i)(ρ) and

χi i (ρ) = χ (i)(ρ).
We now turn to a heuristic derivation of the large deviations principle (3.8)–

(3.9) for the current. Recall the statement and the notation introduced in Sec. 3.
In order to make the trajectory j typical, we introduce an extra weak time

dependent external field F = (F1, . . . , Fd ) by perturbing the rates as in Sec. 2,
namely

cF
x,x+ei

(η) = cx,x+ei (η) eN−1 Fi (t,x/N ), cF
x+ei ,x (η) = cx+ei ,x (η) e−N−1 Fi (t,x/N ).

(A.7)

We denote by P
N ,F
ηN the probability distribution of the perturbed process. Since

these rates cF are the same as the rates of the original process with E replaced by
E + F (cf. (2.2)), we have the following law of large numbers:

lim
N→∞

P
N ,F
ηN (J N ≈ j) = 1

where

j = J (ρ) + χ (ρ)F = −1

2
D(ρ)∇ρ + χ (ρ)(E + F) (A.8)

and ρ satisfies the continuity Eq. (3.10).
We now read this equation in the opposite direction: given the trajectory j

we first solve (3.10) to get ρ, then we determine the external field F which makes
j the typical behavior, namely

F = χ (ρ)−1

(
j + 1

2
D(ρ)∇ρ

)
− E (A.9)
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By writing the original process in terms of the perturbed one we have

P
N
ηN

(
J N (t, u) ≈ j(t, u), (t, u) ∈ [0, T ] × �

) = P
N ,F
ηN

(
dP

N
ηN

dP
N ,F
ηN

1I{J N ≈ j}

)

The large deviation principle (3.8)–(3.9) will follow, recalling (A.9), once we
compute the Radon–Nikodym derivative and show that on the event {J N ≈ j} we
have, with a negligible error if N → ∞,

log
dP

N
ηN

dP
N ,F
ηN

= − log
dP

N ,F
ηN

dP
N
ηN

≈ −N d 1

2

∫ T

0
dt 〈F, χ (ρ)F〉 (A.10)

This equation can be interpreted, in analogy to the classical Ohm’s law, as the total
work done in the time interval [0, T ] by the external field F .

We shall need some basic tool from the general theory of jump Markov
processes that we briefly recall, see e.g. Ref. (21), Appendix A1 or Ref. (4),
Appendix A. Let � be a countable set and consider a continuous time jump
Markov process Xt on the state space � with generator given by

L f (η) =
∑
η′∈�

λ(η)p(η, η′)
[

f (η′) − f (η)
]

(A.11)

where the rate λ is a positive function on � and p(η, η′) is a transition probability.
We consider also another process X F

t of the same type with time dependent rate
λF (η, t) and transition probability pF (η, η′; t). Then, denoting by Pη0 and P

F
η0

the
distribution of the two processes with initial condition η0 we have

dP
F
η0

dPη0

(Xt , t ∈ [0, T ]) = exp

{
n∑

i=1

log
λF (Xτi−1 , τi )pF (Xτi−1 , Xτi ; τi )

λ(Xτi−1 )p(Xτi−1 , Xτi )

−
∫ T

0
dt [λF (Xt , t) − λ(Xt )]

}
(A.12)

where τ0 = 0, X0 = η0, τi , i = 1, . . . , n is the time in which the process jumped
from Xτi−1 to Xτi , and n is total number of jumps in the time interval [0, T ].

For the process η(t) with generator (2.3) we have for x , y in Z
d ,

λ(η) p(η, σ x,yη) = (1/2)N 2cx,y(η) λ(η) = (1/2)N 2
∑
x,y

cx,y(η)

For the process η(t) with rates (A.7) we have

λF (η, t) pF (η, σ x,x+ei η, t) = (1/2)N 2cx,x+ei (η)eN−1 Fi (t,x/N )
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and a similar formula for λF (η, t) pF (η, σ x+ei ,xη, t) so that

λF (η) = (1/2)N 2
d∑

i=1

∑
x

{
cx,x+ei (η)eN−1 Fi (t,x/N ) + cx+ei ,x (η)e−N−1 Fi (t,x/N )

}
.

From (A.12) and the explicit expressions for the rates, we get that

log
dP

N ,F
ηN

dP
N
ηN

= 1

N

d∑
j=1

∑
x

∑
τx,x+e j

Fj (τx,x+e j , x/N ) −
∑

τx+e j ,x

Fj (τx+e j ,x , x/N )


− N 2

2

∫ T

0
dt
{
cx,x+e j (η(t))

(
eN−1 F(t,x/N ) − 1

)
+cx+e j ,x (η(t))

(
e−N−1 F(t,x/N ) − 1

)}
,

where τx,y are the jump times from x to y. Expanding the exponentials and recalling
the definition of the empirical current, we may rewrite the previous expression as

N d〈〈J N , F〉〉T − N

2

∫ T

0
dt
∑

x

d∑
i=1

Fi (x/N , t) {cx,x+ei (η(t)) − cx+ei ,x (η(t))}

− 1

2

∫ T

0
dt
∑

x

d∑
i=1

{cx,x+ei (η(t)) + cx+ei ,x (η(t))} Fi (x/N , t)2 + O(1/N ),

(A.13)
where we let cx,y = 0 if x, y ∈ �N .

For gradient models condition (A.3) holds so that we can perform a summa-
tion by parts in the second term. Recalling the definition of the diffusion matrix D,
the mobility χ and the local equilibrium assumption, we can express the second
term of the right hand side of (A.13) in terms of the empirical density. Since we
are assuming J N ≈ j , we get that

log
dP

N ,F
ηN

dP
N
ηN

≈ N d

{
〈〈 j, F〉〉T +

∫ T

0
dt〈F, (1/2)D(ρ)∇ρ − χ (ρ)E〉

− 1

2

∫ T

0
dt〈F, χ (ρ)F〉

}
. (A.14)

which, by the choice of F in (A.9), concludes the derivation of (A.10).
The rigorous derivation of action functional I requires some difficult esti-

mates. In fact, while in the proof of the hydrodynamic limit it is enough to show
that the local equilibrium assumption holds with a negligible error as N → ∞, in
the proof of the large deviations we need such an error to be o(e−C N d

). This can
be proven by the so called super exponential estimate, see Refs. (21, 23), which is
the key point in the rigorous approach.
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Recall the dynamical large deviations principle for the density stated in (1.4).
The rate functional F is given by

F[0,T ](ρ) = 1

2

∫ T

0
dt 〈∇H (t), χ (ρ(t))∇H (t)〉 (A.15)

where, given the fluctuation ρ, the external potential H = H (t, u) is chosen so
that it vanishes at the boundary and

∂tρ = ∇ ·
(

1

2
D(ρ)∇ρ − χ (ρ)[E + ∇H ]

)
(A.16)

which is a Poisson equation for H .
We conclude this Appendix showing how the above result follows directly

from the large deviation principle for the current. We fix a path ρ = ρ(t, u),
(t, u) ∈ [0, T ] × �. There are many possible trajectories j = j(t, u), differing by
divergence free vector fields, such that the continuity Eq. (3.10) is satisfied. The
functional F[0,T ](ρ) can be obtained by minimizing I[0,T ]( j) among all such paths
j

F[0,T ](ρ) = inf
j :

∇· j=−∂t ρ

I[0,T ]( j) (A.17)

To derive the functional (A.15) we show that the infimum above is obtained
when the external perturbation F introduced in (A.9) is a gradient vector field
whose potential H solves (A.16). Let H be the solution of (A.16) and F as in
(A.9), we write

F = ∇H + F̃ (A.18)

By the definition of H we get

〈∇H, χ (ρ)F̃〉 = −
〈

H,∇ · j + ∇ ·
(

1

2
D(ρ)∇ρ − χ (ρ)E − χ (ρ)∇H

)〉
= 0

Hence

I[0,T ]( j) = 1

2

∫ T

0
dt {〈∇H, χ (ρ)∇H〉 + 〈F̃, χ (ρ)F̃〉}

Therefore the infimum in (A.17) is obtained when F̃ = 0, so that the functional
defined in (A.17) coincides with (A.15).
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